

Project Partners: ARMINES, Autonomous University of Madrid, BME, IKERLAN, Soft-Maint,

SOFTEAM, The Open Group, UNINOVA, University of York

Project Number 611125

DSL-tao User Manual

Version 0.2

March 2015
Draft

miso research group

http://www.miso.es

Autonomous University of Madrid

http://www.miso.es/

DSL-tao User Manual

Page ii Version 0.2 March 2015

TABLE OF CONTENTS

1. Introduction ... 1

2. Installation and general organization of the editor .. 2

3. Basic meta-model editing .. 3

4. Pattern-based development .. 7

4.1 Pattern services ... 9

5. Visualization mechanisms .. 12

 DSL-tao User Manual

March 2015 Version 0.2 Page 1

1. INTRODUCTION

DSL-tao is a meta-model editor to support in the creation of large meta-models and

facilitate the application of patterns. The editor has been realized as an Eclipse plugin

targeting EMF as the meta-modelling technology for DSL’s meta-model specification.

It provides a graphical front-end for the definition of meta-models, and an extensible

library of patterns which can be applied to the meta-models being constructed. The

editor is available at http://jdelara.github.io/DSL-tao/.

To facilitate the manipulation of large meta-models, the editor provides facilities like:

1. Hierarchical organization of elements into packages.

2. The construction of meta-models by applying patterns; including an assistant for

applying the pattern, and the visualization of the applied patterns and roles.

3. The availability of predefined queries to obtain and visualize useful derived

information for a given meta-model element. For example, given a class, we can

obtain and visualize all inherited attributes, all parent and children classes through

inheritance, and all reachable classes by containment. This feature improves

navigation and understandability of large meta-models.

4. Filters that simplify the visualization of large meta-models (e.g. collapsing or hiding

certain elements, like pattern information or references).

http://jdelara.github.io/DSL-tao/

DSL-tao User Manual

Page 2 Version 0.2 March 2015

2. INSTALLATION AND GENERAL ORGANIZATION OF THE EDITOR

The editor has been implemented as an Eclipse plugin. It can be downloaded from

http://jdelara.github.io/DSL-tao/.

The editor provides a suitable perspective to work with the meta-model diagrams (the

MONDO perspective). The perspective consists of four areas, as seen in Figure 1:

1. The project explorer.

2. A canvas where the diagram is built and displayed.

3. The palette, which provides the elements that can be added to the diagram.

4. The view area, which collects specific views to work with this kind of diagrams

(available patterns, applied patterns, pattern services, element properties and derived

information).

Figure 1: MONDO perspective, with the editor structure.

The next sections describe the main functionalities of the editor.

http://jdelara.github.io/DSL-tao/

 DSL-tao User Manual

March 2015 Version 0.2 Page 3

3. BASIC META-MODEL EDITING

Creation of MONDO projects and diagrams. The tool manages MONDO projects

and diagrams. Figure 2 shows how to create a new MONDO project or diagram by

invoking a wizard from the “File” menu of Eclipse.

Figure 2: Creating a new MONDO project and diagram.

A MONDO project provides an environment with all the resources needed for the

construction process of diagrams using patterns.

The new project includes a repository of patterns (within the folder called "patterns"), so

the user has the possibility of adding new ones, and deleting and updating the

predefined ones.

The project structure and the pattern definition model are showed in Figure 3.

Figure 3: MONDO project structure.

A MONDO diagram consists of an underlying Ecore meta-model and a graphical

representation for it. Diagrams can be created empty, or an existing Ecore meta-model

can be imported and the tool provides an initial visualization for it.

DSL-tao User Manual

Page 4 Version 0.2 March 2015

There are two ways to import an existing Ecore meta-model into a MONDO diagram.

The first one is from an existing MONDO diagram. This is done by right-clicking on

the diagram canvas, as shown to the left Figure 4. As a result, the meta-model content is

included on the diagram. The second possibility is to create a MONDO diagram from an

Ecore meta-model, by right-clicking on the meta-model file in the package explorer, as

shown to the right of Figure 4.

Figure 4: Importing an Ecore meta-model from the editing canvas (left). Creating a MONDO

diagram from an Ecore meta-model (right).

When an Ecore meta-model is imported, either from the canvas or from an Ecore file, a

new copy is created and linked to the MONDO diagram; thus, changes in the MONDO

diagram will not be propagated to the original meta-model.

Interactive creation of meta-models. The editor permits creating classes, attributes,

references, enumerations and enumeration literals. It allows organizing the elements in

packages, and adding annotations to the different elements.

The addition of elements to the diagram is performed by “drag and drop” from a palette

into the correct diagram container. For example, to create an attribute on a class, the

attribute is to be dropped on the corresponding class container. A class is created by

dropping a class into the diagram. The diagram contains an implicit package, which acts

as the container for all classes.

Furthermore, association and inheritance connections can be created from de source

class shape through its related popup menu.

Figure 5: Connection popup menu

 DSL-tao User Manual

March 2015 Version 0.2 Page 5

Elements in the meta-model can be annotated by the user. There are different

mechanisms to work with annotations. First, the user can drop annotations into a given

container. Second, annotations can be managed (addition, deletion and modification)

using the property tab “Annotations”, as shown in Figure 6.

Figure 6: Annotations tab in Properties view.

Editing properties. The different properties of elements can be edited. For this

purpose, the editor provides a view that collects information about the selected element

and permits changing its values, as shown in Figure 7 for the case of an attribute. Some

properties, like the name of the class, can also be changed directly on the associated

pictogram in the canvas.

Figure 7: Properties view.

In addition, this view also enables the creation and editing of opposite references. Two

opposite references are visualized as a single line, but the properties of each role can be

edited separately in two different tabs, as shown in Figure 8. To configure whether a

reference is bidirectional (i.e. it has an opposite role) or unidirectional, the “Opposite”

check-box in the Opposite tab should be used, as shown highlighted in the figure.

Figure 8: Opposite references tab in Properties view.

DSL-tao User Manual

Page 6 Version 0.2 March 2015

Exporting a meta-model into Ecore. At any moment, the meta-model being

constructed can be exported into the Ecore format, using a contextual menu option, as

shown in Figure 9.

Figure 9: Exporting a meta-model into Ecore.

Additionally, the information related to the patterns used can be exported as well using

the option "Export Meta-model+Patterns..." as seen in Figure 9. This option will create

two files into the destination directory selected by the user.

Before the export is performed, a validation of basic correctness properties of the meta-

model is automatically performed, including:

 Uniqueness of attribute and reference names in inheritance hierarchies.

 Uniqueness of ID attribute in inheritance hierarchies.

 Valid URI and name for each package.

Other correctness properties, regarding for example valid names, or the acyclicity of

inheritance relations are checked during the editing of the meta-model.

Note: Once exported, the diagram and the exported meta-model become independent,

that is, the changes performed on the diagram will not be reflected on the meta-model,

and vice versa.

 DSL-tao User Manual

March 2015 Version 0.2 Page 7

4. PATTERN-BASED DEVELOPMENT

DSL-tao enables the construction of meta-models by means of libraries of reusable

patterns. In this way, the meta-model developer can select patterns and apply them on

the existing meta-model with the help of an assistant. Applying a pattern will result on

the creation of new meta-model elements and the annotations of the new (or existing)

elements with the different pattern roles. Such roles can be used by pattern processors,

for example to contribute features to the generated DSL environment.

The editor contains a “patterns view”, showing the collection of patterns that can be

applied to the meta-models, organized in categories, as shown in Figure 10.

Figure 10: Patterns view.

Next, we explain the different phases in pattern usage: (1) pattern selection, (2) pattern

variant selection, (3) pattern role expansion, (4) pattern role binding, and (5) pattern

application.

(1)(2) Pattern and variant selection. To use a pattern, the user must select it, and a

wizard will appear guiding the user in the application process, as shown in Figure 11.

The first page in the wizard shows a brief description about the selected pattern. In the

next one, the user can choose between different pattern variants and visualize their

graphical representation. As an example, the figure shows some variants of a pattern for

tree-based structures.

Figure 11: Assistant for pattern application.

DSL-tao User Manual

Page 8 Version 0.2 March 2015

(3) Pattern role expansion. Once a pattern variant is selected, the last page of the

wizard allows the user to expand the pattern roles and bind those roles to meta-model

elements, as shown in Figure 12.

There are two main parts in this page. The first part (on the left) is a tree view that

contains the meta-model elements of the saved diagram. The second part (on the right)

is a tree-table that collects information about the structure of the pattern, their allowed

expansion cardinalities, and the application of the pattern (the elements of the meta-

model to which they have been bound).

Figure 12: Wizard for pattern instantiation.

As explained in Section 1, applying a pattern consists on: (i) expanding the pattern roles

according to their allowed expansion cardinality, and (ii) binding the pattern roles to

existing meta-model elements. The pattern roles left unbound will be instantiated in the

meta-model, while the bound elements in the meta-model will receive an annotation (a

“type”), which may be used by pattern services to perform different tasks.

Pattern roles can be expanded according to their expansion cardinality. This is done by

right-clicking on the pattern role, as shown to the left of Figure 13.

Figure 13: Expanding a pattern role (left). Invoking the assistant for role binding (right).

(4) Binding the pattern roles. Once expanded, the pattern roles should be bound to the

meta-model elements. The wizard enforces well-formedness rules for the binding. For

example, the tool only allows binding elements of the same nature, that is, classes with

classes, references with references, and so on. In addition, the attributes can only be

related when its container class is assigned and the references when the source and

target classes are assigned.

Furthermore, the wizard contains an assistant that recommends the optimal element/s to

be bound to, for a selected pattern role. This mechanism can be activated when the

pattern role is selected, as shown to the right of Figure 13.

 DSL-tao User Manual

March 2015 Version 0.2 Page 9

Two heuristics are used for the recommendation, one is generic (implemented in the

tool), and the second is domain-specific, provided together with the pattern through an

extension point. The generic heuristic works as follows:

 If the pattern element is a class: the heuristic recommends classes with the same

number of attributes, containment references, reflexive references, and the rest of

references. Please note that we consider structural matches, and hence, inherited

features are also checked.

 If the pattern element is an attribute: the heuristic recommends attributes that be-

long to the class that is bound to the attribute owner, and have the same type.

 If the pattern element is a reference: the heuristic recommends references that be-

long to the class that is bound to the reference owner, have the same cardinality,

and have the same type (i.e. point to the correct class). Opposite references are

checked as well.

Class roles in patterns may include “constant attributes”, which are not meant to be

bound, but a value should be provided for them instead. Conceptually, patterns are

located one meta-level above the current meta-model, and therefore, such attributes can

be thought of having “potency” 1 as they have to be assigned a value at the meta-model

level, while “normal” attributes are given a value at the model level. As Figure 14

shows, these two different attribute types are represented differently, and the figure

shows the values given to the “constant” attributes extension and icon.

Figure 14: “constant” and “normal” attributes in patterns.

(5) Pattern application. Once the binding is performed, the pattern can be applied. The

bound roles are translated into instances of a pattern meta-model (this model is stored

within the diagram) The roles that are left unbound but are mandatory (minimum

expansion cardinality of 1) are created in the meta-model. Figure 15 shows the result of

a pattern application, where the pattern roles are shown in black.

Figure 15: Result of a pattern application.

4.1 PATTERN SERVICES

Each pattern may have associated a service, which can be invoked through the meta-

model editor. Typically, these services are provided through an extension point, and will

provide functionalities for the generated modelling environment.

DSL-tao User Manual

Page 10 Version 0.2 March 2015

This functionality is based on the extension point shown schematically in Figure 16.

Figure 15: Scheme of extension point for patterns.

To define an implementation associated to a pattern, it is necessary to indicate the name

of the pattern (attribute pattern in the figure), and implement the interface

IPatternImplementation, which defines the methods execute(), validate() and

getOptimalElements(). The execute method will typically call a code generator

contributing to the generated plugin. The validate method provides domain-specific

checkings to assert the correct instantiation of the pattern. The validation result is

displayed in the diagram, as shown in Figure 17. The getOptionalElements method

is used by the binding assistant to provide domain-specific heuristics on the most

appropriate meta-model element to bind a given pattern role.

Figure 17: Result of pattern validation.

The same pattern can be applied several times (the maximum number of instances is in-

dicated in the pattern definition). Each application of a same pattern has its own options

in the action menu as shown in Figure 18. In addition, all of them can be validated and

executed from a unique menu option.

Figure 18: Service menu options.

 DSL-tao User Manual

March 2015 Version 0.2 Page 11

The service provided by some pattern, may require the services provided by other pat-

terns. Moreover, some services can be optional. The user can configure the services he

wants to use, using the "Pattern Services View". Figure 19 shows how the service "Hi-

erarchical Organization" is required by the service "Filtering". In the case of an un-

bound service, the view shows the patterns that offer such service.

Figure 19: Pattern services view.

DSL-tao User Manual

Page 12 Version 0.2 March 2015

5. VISUALIZATION MECHANISMS

The editor provides several mechanisms to facilitate the visualization and exploration of

large-scale meta-models, which are described next.

 Collapsing/expanding filters. In order to visualize a meta-model in a simpler

way, it is possible to filter some information and display only the name of the

classes, references and applied pattern names (in collapse mode). Furthermore,

the editor allows restoring to the expanded mode.

This functionality can be used in two ways: individually by collapsing/expanding

each class, or globally by applying the filter to all classes in the diagram. Both

modes are illustrated in Figure 20.

Figure 20: Collapse option for individual classes (left). Global collapse option (right).

 Showing/hiding pattern role information. The editor depicts on the diagram the

pattern information applied to the different meta-model elements. This

information can be hidden or displayed, as Figure 21 shows.

Figure 21: Showing and hiding annotations for pattern roles.

 DSL-tao User Manual

March 2015 Version 0.2 Page 13

 Highlighting applied patterns. To emphasize how the patterns have been

applied, the editor provides a view with the applied patterns and their roles. When

a pattern is selected, all their elements are highlighted and the rest of the meta-

model is hidden. This feature is illustrated to the left of Figure 22.

Figure 22: Highlighting applied patterns (left). Unbinding pattern roles to meta-model

elements (right).

This view also enables the management of the applied patterns, allowing the

deletion of pattern role bindings from the different meta-model elements, as

shown to the right of Figure 22.

 Highlighting derived information. To facilitate the exploration of large meta-

models, we provide some predefined queries to visualize derived information.

Hence, given a selected class, we provide all its supertypes, subtypes, attributes

and references (owned and inherited). This feature is illustrated in Figure 23.

Figure 23: Showing derived information for a given class.

For packages, their additional information tab shows the list of all the containment

and inheritance hierarchical roots which are contained by the package. In addition,

information about some metrics such as the total number of classes, attributes and

references is included as seen in Figure 24.

Figure 24: Showing additional information for a given package.

 Package navigation. The editor supports the organization of a meta-model into

packages, and the exploration of package contents, as shown in Figure 25.

DSL-tao User Manual

Page 14 Version 0.2 March 2015

The content of a package is shown in another diagram, which can be edited as

usual. It is also possible to navigate back to the container package.

Figure 25: Expanding the contents of a package.

